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Universal Suspension Hydrodynamics:
Molecular Characterization of Hydroxypropyl

Methylcellulose

Robert Lundqvist
Pharmaceutical and Analytical R&D, AstraZeneca R&D Mölndal,

Mölndal, Sweden

Abstract: A study of the rheology of aqueous solutions of hydroxypropyl methyl-
cellulose (HPMC) is presented with the aim of supporting the previously sug-
gested physics, referred to as laminar dynamics, of the viscosity increasing
effect per unit volume of particles with extended shape on a flowing suspension.
Since it is essential that appropriate flow is employed in order to utilize the pro-
posed model enabling absolute values of the particle’s weight average axial ratio
aw to be derived from the intrinsic viscosity [g], the shear requirement is studied
extensively. Hence, flow curves (viscosity g versus shear rate) for a series of com-
mercial HPMC viscosity grades (3 to 10,000 cP) of USP substitution type 2910
were measured under an extended range of concentrations c (g=dL) and shear
rates D (1=s). The results indicate that [g] (dL=g) can be obtained by combining
c and D in such a way that either c!0 (at constant D>0) or D>D� (at constant
c > 0), where D� is a critical shear rate. It may hence be concluded that laminar
dynamics is applicable at any constant D>0 if c!0, and it is proposed that such
flow corresponds to a complete absence of particle–particle interactions leading to
a flow in the vicinity of the particle parallel to its length axis. It is demonstrated
that the particle–particle interaction tends to become negligible, i.e., the Huggins
constant kH! 0 (for extended shape), at any concentration when D>D�.
Assuming that the particle–particle interaction is entirely hydrodynamic, i.e., a
negligible non-hydrodynamic interaction such as an electrostatic or chemical
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interaction, at any D, it is possible to derive a universal suspension hydrodyn-
amics, solely determined by the particle shape and concentration under Newtonian
conditions and general to any polymer suspension or solution, by combining
stationary dynamics (shown empirically to be a universal relation; gsp ¼ f(c[g]),
D!0) with laminar dynamics (gsp ¼ c[g], D>D� or c!0). It is demonstrated
how these universal functions can be used for absolute determination of aw and
subsequent calculation of such values as molecular weight, size, Mark-Houwink
constant, critical (‘‘overlap’’) concentration c�, and radius of gyration Rg,w.
In addition, a universal suspension characteristic termed critical specific viscosity
gsp
� is identified.

Keywords: Hydroxypropyl methylcellulose; Hydrodynamics; Critical shear rate;
Critical specific viscosity; Overlap concentration; Polymer

INTRODUCTION

In a preceding article[1] it was shown how it is possible to obtain infor-
mation about the axial ratio from viscosity measurements of suspensions=
solutions of particles with extended shape, e.g., polymers. It was demon-
strated that the intrinsic viscosity [g]/, expressed in terms of dimensionless
volume fractions /, simply equals the axial ratio of the particle=polymer
if the required conditions for laminar dynamics are met. In order to deter-
mine the necessary flow condition, this article concerns the influence of
shear rate (i.e., the rheology of the suspension of particles in a liquid).
The model polymer used, hydroxypropyl methylcellulose (HPMC), is the
same as characterized previously, with osmometry[2] and capillary viscom-
etry,[1] in a broad range of molecular weights M (g=mol), intrinsic viscos-
ities [g] (dL=g), and temperatures (�C). In this work the ranges of both
shear rate D (1=s) and concentration c (g=dL) are considerably extended.

EXPERIMENTAL SECTION

Materials

Commercial HPMC of USP-substitution type 2910 was obtained from the
following manufacturers: Dow Chemical Company (Midland, Michigan,
USA) (Methocel E3P and E6P) and Shin-Etsu Chemical Company
(Naoetsu, Japan) (Metolose 60SH-6, Metolose 60SH-50, and 60SH-
10000). The actual alkoxyl content (% w=w) of the HPMC samples used
was 29.0� 0.8% methoxyl and 8.8� 0.8% hydroxypropoxyl, which cor-
responds to a molar substitution of 1.90� 0.05 for the methyl and
0.23� 0.03 for the hydroxypropyl groups. Viscosity grades studied were
3 cP, 6 cP, 50 cP, and 10,000 cP. The viscosity grade denotes, following
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USP nomenclature, the viscosity (cP or mPas) of a 2% w=v solution at
20�C and low shear rate. Aqueous solutions were prepared by dissolving
dried (at 80�C) HPMC samples followed by filtration through a mem-
brane from Millipore (Molsheim, France) (Type AA, 0.8 mm). Solutions
having a concentration exceeding about 1 g=dL were not filtered.

Instruments

Couette viscometry was carried out using a Physica Viskolab LC20
(Physica, Messtechnik GmbH, Stuttgart, Germany), equipped with a
double-gap measuring system (Z1 DIN54453). The temperature was con-
trolled at 20�C within�0.1�C with a Lauda RM6 thermostat. Calibration
was made with 2000 cP (Type 2000AW, accuracy�0.4%, Deutscher
Kalibrierdienst, Industriepark Wolfen=Thalheim, Germany) and 9 cP
(Type Cannon S6, accuracy�0.25%, Cannon Instrument Company,
Pennsylvania, USA) Newtonian viscosity standards.

Measurements

Specific viscosity gsp (dimensionless) was determined as gsp ¼ g=g�– 1,
while intrinsic viscosity [g] was obtained by extrapolating the reduced
viscosity gsp=c (dL=g) to zero concentration. Here, g (mPas) denotes
the viscosity of the suspension=solution and g� its value at zero concen-
tration.[1] A measurement cycle with the Couette apparatus consisted of
a run with increased shear rate, from zero to max shear rate, and the
reversed run. Since complete reversibility was always observed in these
measurements and since four consecutive capillary[1] measurements with
the same solution always appeared identical, there was no indication of
shear degradation of HPMC under the conditions employed in this work.

THEORY

The general theory of laminar dynamics, i.e., a treatment of the physics of
the viscosity increasing effect per unit volume of suspended particles with
extended shape in a laminar flow, is outlined in a preceding article.[1] Yet,
a few more assumptions (I–III) appear useful.

I. For simplicity, we shall restrict ourselves to the case were the liquid
constituent is much smaller than the particle. In this case the axial
ratio of the liquid constituents al should have no effect on the
viscosity of the suspension, and al may be defined as unity. Hence,
the dimensionless intrinsic viscosity [g]/ obtained by using volume
fractions / will approach the weight average axial ratio aw of
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the particles having extended shape according to Equation (1):

½g�/ ¼ aw þ 1:5 ffi aw ðaw >> 1Þ ð1Þ

and where [g]/ is related to the intrinsic viscosity [g] expressed in
dL=g through Equation (2):

½g�/ ¼ ½g�q100 ð2Þ

where q (g=mL) is a conversion factor (g dry polymer per mL
solvated polymer).

II. The flow direction of the liquid in the immediate vicinity of the par-
ticle remains parallel to its length axis regardless of Brownian motion.

III. There exists a critical (limiting) shear rate D� (1=s) above which the
distorting effect of the Brownian motion on the orientation of a par-
ticle, with a given extended shape, may be considered completely
suppressed.

RESULTS AND DISCUSSION

Preliminary investigations indicated that the non-Newtonian behavior of
aqueous solutions of HPMC was more pronounced the higher the mol-
ecular weight, and therefore emphasis was put on measurements on the
highest viscosity grade, i.e., the 10,000 cP grade. However, supplementing
information, especially the behavior at high concentration, was gained by
measurements on lower viscosity grades: 3 cP, 6 cP, and 50 cP.

Shear Dependence of the Reduced Viscosity

Figure 1 summarizes the results from the Couette viscometry on aqueous
solutions of HPMC 10,000 cP. The viscosity has been scaled by trans-
forming it into the logarithm of the reduced viscosity log(gsp=c). The scal-
ing facilitates a mechanistic interpretation as well as a presentation of the
greatly varied system, viscosities ranging from 1 to 14,000 cP and concen-
trations in the range from 0.05 to 2 g=dL. The most important peculiarity
of Figure 1, in addition to the shear-thinning behavior, is that the reduced
viscosity approaches the intrinsic viscosity [g] at any concentration with
increasing shear rate. The graph also suggests a common critical rate
of shear D�, approximately 60,000 1=s above which all curves coincide
into the same line: log(gsp=c) ¼ log[g]. Furthermore, it demonstrates that
the extent of non-Newtonian behavior is rapidly decreased with lowered
concentration and it indicates that the suspension approaches Newtonian
behavior when the concentration approaches zero.

Unfortunately the Couette instrument was not capable of measuring
shear rates higher than 4000 1=s, so a direct observation of the suggested
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laminar Newtonian behavior at D > 60,000 1=s was not possible. How-
ever, indirect evidence of its existence may be derived by analyzing the
concentration dependence at constant shear rate. Figure 2 shows such a
plot of log gsp versus log c at constant D. It again indicates that all curves
coincide into a single line at sufficiently high shear rate. The slope of this
line is unity, and the line can be expressed according to Equation (3):

gsp ¼ c½g� ð3Þ

In addition, it can be seen from Figure 2 that Equation (3) becomes valid
at any shear rate (D>0) at sufficiently low concentration, less than about
0.01 g=dL in the case of HPMC 10,000 cP. It also suggests that the intrinsic
viscosity [g] can be obtained both at any constant shear rate (D>0) by
extrapolating to zero concentration and at any concentration by extra-
polation to shear rate ¼ D�. The latter suggestion presumes that aqueous
HPMC is equally extended at any shear rate.

Shear Dependence of the Huggins Interaction Constant

The concentration dependence of the reduced viscosity is frequently
expressed as a truncated polynomial expression according to Equation (4):

gsp=c ¼ ½g� þ kH½g�2cþ � � � ð4Þ

Figure 1. Reduced viscosity log gsp=c (dL=g) as a function of shear rate log D
(1=s) for aqueous HPMC 10,000 cP at 20�C and various concentrations c (g=dL).
dL). The curves congregate at a critical shear rate log D�.

Universal Suspension Hydrodynamics 263

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



where kH, usually referred to as the Huggins constant or the interaction
constant,[3] may be viewed as generally reflecting the combined hydro-
dynamic and chemical interaction.[1] However, under laminar Newtonian
conditions, kH appears to be entirely due to hydrodynamic interactions, as
was concluded before,[1] to account for the fact that kH was unaffected by
an appreciable chemical variation (brought about by decreasing the
hydration with an increase in temperature).[1]

Figure 3 presents the observed concentration dependence of gsp=c at
constant shear rates ranging from 200 to 4000 1=s for HPMC 10,000 cP.
Curves for very low shear rate (D ¼ 1 1=s) and very high shear rate
(D ¼ 100,000 1=s) have been obtained by extrapolating data from
Figures 1 and 2. It is evident that the linearity of the concentration depen-
dence of the reduced viscosity is restricted to concentrations lower than a
certain concentration clin, which approximately equals the frequently
used[4] ‘‘overlap’’ concentration c�. Furthermore, it appears as if
these approximate c� values approach a finite value as the shear rate
approaches zero, while they steadily increase with increased shear rate
approaching unit volume fraction (i.e., c� ! 100q g=dL) at infinite D.
The values of clin and kH for aqueous HPMC are collected in Tables I
and II, which show that kH approaches a finite value of about
0.6� 0.2 (dimensionless) as D!0, while kH becomes zero at sufficiently
large D (D>D�, see Figures 2 and 3). The results are consistent with

Figure 2. Specific viscosity log gsp as a function of concentration log c (g=dL) for
aqueous HPMC 10,000 cP at 20�C and various constant shear rates D (1=s). The
lines converge to a single line, gsp ¼ c[g], at sufficiently low concentration or high
shear rate.
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the view that kH reflects hydrodynamic interactions only at conditions
where the particle–particle interaction is negligible, i.e., at sufficiently
low concentration or at sufficiently high shear rate.

General Shape of the Flow Curves

The above findings can be used to construct complete flow curves for the
HPMC solutions. Hence, all experimental and theoretical information

Figure 3. Linear plot of reduced viscosity gsp=c vs. concentration c (g=dL) for
aqueous HPMC 10,000 cP at 20�C and various constant shear rates D (1=s).
The decreasing slopes with increasing D indicate that Huggins constant kH! 0
as D�D�. Likewise, a limiting value of kH is indicated as D! 0.

Table I. Linear range concentrations clin and Huggins interaction constants kH

for aqueous HPMC 10,000 cP determined with Equation (4) from data in Figure 3
at constant shear rate D using Couette viscometry at 20�C

Shear rate range (1=s) clin (g=dL) kH dimensionless

1 0.07� 0.03 0.8� 0.2
1,000 0.12� 0.05 0.7� 0.1
2,000 0.5� 0.1 0.6� 0.1
4,000 >0.5 0.4� 0.1
100,000 >0.2 0
1 96 esta 0

aclin� c� ¼ 100=q, where q ¼ 1.04 g (dry polymer=mL solvated polymer) is a
conversion factor to volume fraction.[1]
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may be combined as shown in Figure 4, which depicts the flow curves in
terms of the relations between shear force s (mPa) and shear rate D (1=s)
in a log-log plot for various concentrations. The curves have a typical sig-
moid shape showing two Newtonian regions characterized by parallel
lines having unit slope. The separation between the two lines decreases
with decreased concentration so that they coincide into one single line
as the concentration approaches zero. The two Newtonian regions at
low and high shear rates may be termed stationary Newtonian and
high-shear Newtonian, respectively. Stationary Newtonian conditions

Table II. Linear concentration ranges clin, ‘‘overlap’’ concentrations c�, and
Huggins interaction constants kH at stationary conditions (D!0 1=s) for aqueous
HPMC of various viscosity grades estimated with Couette viscometry at 20�C

HPMC Viscosity
grade 2% w=v,
20�C cP

[g] 20�C,a

dL=g
Linear conc. range,

clin 20�C g=dL
kH 20�C
unit less

c�

Equation (24)
g=dL

10,000 9.58� 0.12 0.07þ 0.03 0.8� 0.2 0.13
50 2.67� 0.05 0.7� 0.2 0.6� 0.1 0.47
6 0.91� 0.03 1.4� 0.3 0.7� 0.2 1.38
3 0.69� 0.02 1.8� 0.3 0.6� 0.1 1.83

aCapillary viscometry.[1]

Figure 4. Flow curves, log s (mPas) vs. log D (1=s), for aqueous HPMC
10,000 cP at 20�C and various concentrations c (g=dL). Extrapolations are made
according to theory.
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thus occur at near-zero shear rate while high-shear Newtonian conditions
occur above a critical shear rate D� characteristic of the particle shape
(D� is about 60,000 1=s for HPMC 10,000 cP). According to laminar
dynamics (see Equation (3)), the high-shear Newtonian region corre-
sponds to shear independent reduced viscosity equal to the intrinsic
viscosity.

The sigmoid shape and the existence of two Newtonian regions for
shear-thinning suspensions=solutions are generally recognized rheologi-
cal behavior[5–15] in accordance with the pioneering work on colloids
(‘‘Ostwald-curves’’ demonstrating only the high-shear Newtonian
region)[16] and polymer solutions by Reiner (first general flow curve
‘‘Konsistenzkurve’’ recognizing also the low-shear Newtonian region)
and by Philippoff and coworkers and later work by Timell, Merrill,
and Yang on rubber,[17,18] celluloses,[19–22] polyisobutylene,[23,24] poly-
styrene,[25] and polypeptides.[26,27] The rheology of the shear-thinning
region between the two Newtonian regions corresponds to the behavior
of ‘‘power-law’’ fluids or ‘‘Ostwald-de Waele’’ fluids since the central part
of this region shows linear relations between log g and log D with slopes
between 0 and	1.[5,6,8,9,11–14,28–30]

Philippoff and coworkers[22] and Merrill[24] found, in agreement with
the present work, that gsp=c becomes constant independent of concen-
tration, equaling [g] at sufficiently high shear rate. However, in their ear-
lier work and also in the work of Yang[26,27] values of gsp=c even lower
than [g] were occasionally indicated. The reason for these latter observa-
tions may be that the systems studied did not obey all of the necessary
conditions for obtaining laminar dynamics. In fact, the rheological con-
ditions of these systems were extreme as a result of a combination of high
shear rate (up to 106 1=s) and high [g] (up to 46 dL=g).[19] Possibly, too
high shear stress might have led to a slippage (shearing or friction)
between the particle and liquid leading to violation of the adherence
requirement.[1] Another possibility is experimental difficulties due to vis-
cous heat generation.[31] Nevertheless, at high frequencies of alternating
shear stress, a few systems that behave just opposite to the above systems
in that the high frequency [g0] , where g0 is the dynamic viscocity, is inde-
pendent of shape (molecular weight and branching) and dependent only
on polymer chemistry have been reported by Ferry.[10] These systems,
studied with oscillatory viscometry, appear to represent another hydro-
dynamic case, possibly dominated by the above-mentioned slipping,
but which is not the issue of this work.

Surprisingly, although obvious from the experimental results in the
above-cited polymer literature, it was not explicitly stated that kH is shear
dependent and that kH actually approaches zero at sufficiently high shear
rate. However, using other theoretical arguments, Berry and Russel[32]

propose that kH for rods decreases to zero with increasing Peclet number,
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which is further supported by observations of Chauveteau[33] on high mol-
ecular weight xanthan in 0.1 M NaCl, although the additional effect of
slipping is also indicated at high shear stress as a decrease in apparent [g].

Recently, Tsenoglou[34] has, in line with the present work, assumed
that the shear-thinning ceases at a characteristic high shear rate. However,
neither the suggested independence of molecular weight of this character-
istic shear rate nor the influence of the molecular weight on the slope of
the flow curve are in accordance with the experimental observations
reported here.

Rheology of Low Viscosity Grade HPMC

Figure 5 shows the shear rate dependence of the reduced viscosity for the
50 cP grade in a way similar to that for the 10,000 cP grade presented in
Figure 2. It is obvious that the shear-thinning sensitivity of the polymer
decreases rapidly with decreased viscosity grade. The effect is perhaps
more striking in terms of axial ratio aw or [g], which both are changed
by a factor of approximately 3.6 (for intrinsic viscosity [g] see Table II).
If taking the critical shear rate D� as a measure of the shear-thinning sen-
sitivity, a comparison of Figures 1 and 5 shows that this must decrease
approximately one decade from 10,000 to 50 cP since D� appears to
increase from about 60,000 to about 800,000. It can also be inferred from

Figure 5. Flow curves, log gsp=c (dL=g) vs. log D (1=s), for aqueous HPMC 50 cP
at 20�C and various concentrations c (g=dL). The curves demonstrate a weak
shear-thinning effect for c > 0.8 g=dL and D > 4000 1=s.
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Figure 5 that shear thinning for the 50 cP Grade HPMC is not detectable
for <0.8 g=dL concentration at shear rates <4000 s	1. The general trend
of decreased shear thinning with decreased viscosity grade continues
for the 6 cP and 3 cP grades as shown in Figure 6. Here it can be seen that
shear thinning is not detectable for <3 g=dL at <4000 s	1 and for
<6 g=dL at <3200 s	1 for 6 cP and 3 cP, respectively.

Universal Suspension Hydrodynamics

Stationary Conditions (D!0)

If the conclusion reached earlier[1] that the Huggins constant is entirely
due to hydrodynamic interactions in the case of sufficiently dilute particle
dispersions (polymer solutions) is assumed to extend to higher concentra-
tions where the reduced viscosity is no longer linear against the concen-
tration but exponentially increasing, one should be able to bring
particles of any axial ratio a into a universal function gsp ¼ f(a,c). One
way to accomplish this is to rewrite Equation (4) into Equation (5):

gsp ¼ k1ðc½g�Þ1 þ k2ðc½g�Þ2 þ � � � þ kjðc½g�Þj � � � ð5Þ

where k1 ¼ 1, k2 ¼ kH, and all kj are independent of [g].

Figure 6. Flow curves, g (mPas) vs. D (1=s), for aqueous HPMC 3 cP and
HPMC 6 cP at 20�C and various concentrations c (g=dL). The curves demonstrate
a weak shear-thinning effect only at high concentrations (>3 g=dL and >4000 1=s
for 6 cP and >6 g=dL and >3200 1=s for 3 cP).
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Figure 7 shows the result of scaling according to Equation (5) by plot-
ting log gsp versus log (c[g]) at stationary Newtonian conditions (i.e.,
D!0) for aqueous HPMC. The coalescence of the data for all viscosity
grades, ranging from 3 to 10,000 cP (see Table II), into a single curve,
gsp ¼ f(c[g]) supports the above assumption of a universal behavior.

Empirically, a universal function for the concentration dependency
of the relative viscosity, grel ¼ gspþ 1, according to Equation (6):

grel ¼
1þ c½g�

k

� �k
ð6Þ

was found long ago by Baker,[35] who used k ¼ 6 to k ¼ 7 in the equiva-
lent notation grel ¼ (1þ ac)k, where ak can be shown to correspond to [g],
and which equation was later used by Philippoff[19,20] (who used k ¼ 8) to
accurately describe the concentration dependency for various types of
polymers up to high grel (at least grel ¼ 105). Equation (6) is attractively
simple, having only one adjustable parameter k, and appears to be
remarkably useful as a numerical tool, being accurate and of correct form
when c!0 and apparently providing reasonable accuracy up to very high
concentrations (if a >> 1). The broken curve in Figure 7 has been
obtained by using k ¼ 7.2, which fits all the experimental results for
aqueous HPMC, from gsp ¼ 0 to gsp ¼ 105.

Figure 7. Universal dynamics, log gsp vs. log c[g] ¼ log /(awþ 1.5), for aqueous
HPMC of various viscosity grades (3 cP to 10,000 cP) and concentrations
(0.05 g=dL to 10 g=dL) at 20�C and stationary conditions (D!0 1=s). The line
with slope 1 corresponds to universal laminar dynamics; gsp ¼ c[g] ¼ /(awþ 1.5).
Also shown is the universal critical specific viscosity gsp

� (gsp
� � 2.2) corresponding

to slope 1 of log grel vs. log c[g].
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There is other literature support for the universal behavior by Onogi
et al.,[36,37] Johnson et al.,[38] and Takada et al.[39] Onogi et al. found that
‘‘master curves’’ log g versus log c or log M can be obtained for poly-
styrene and polyvinylacetate in a given solvent and at constant tempera-
ture by shifting the curves along the log c or log M axis. Johnson et al.
concluded that polyisobutylene of various molecular weights in the inves-
tigated concentration range, up to about 18 g=dL, in both xylene and dec-
alin at 25�C superimpose in a graph log grel versus log(c M0.68). Takada
et al. showed that widely varied aqueous xantane solutions ([g] from 0.7
to 71 dL=g and concentrations from 0.005 to 9 g=dL) containing 0.1 M
NaCl at 25�C can be scaled using c[g]. In fact, the data give fair agreement
with Equation (6) in the entire investigated range; from log gsp ¼	0.9 to
log gsp ¼ 6.3. Interestingly enough, Ohshima et al.’s[40,41] viscosity data
for greatly varied poly-hexylisocyanate solutions ([g] from 0.2 to 85 dL=g
g in dichloromethane at 20�C,[40] toluene at 25�C,[41] and hexane at
40�C[41]) appear to deviate from the universal behavior at high c[g].
Lower gsp values than expected from Equation (6) are found for
c[g] > 7, corresponding to log gsp > 2, indicating that the fundamental
requirements of laminar dynamics are not obeyed, or that a is decreasing,
at high c[g]. Possibly, an onset of molecular aggregation or folding may
account for this. In any case, the highest concentrations approached the
point where formation of a nematic phase started.

The dimensionless product c[g] can be substituted for /[g]/ or
/(awþ 1.5), since c[g] ¼ /[g]/ ¼ /(awþ 1.5), where / is the volume frac-
tion of particles.[1] This substitution is advantageous since a is physically
more correct and may vary with the system composition while [g] is
restricted to infinite dilution. Consequently, both the weight average axial
ratio aw and [g] for any particle or polymer can be obtained from any of
the universal functions, either in the form log gsp versus log(/(awþ 1.5))
or in the form log gsp versus log(c[g]), as exemplified by Equations (5)
and (6), and Figure 7.

Laminar Conditions (D>D� or c!0)

The conditions of laminar dynamics can be expressed as gsp ¼ c[g], at any
c, provided D is sufficiently large. Since the same expression for gsp is
obtained as a limiting case when c!0, from stationary dynamics it is
evident that both these Newtonian dynamics become indistinguishable
at sufficiently large dilution; see Figure 7.

Shear-Thinning Conditions (D < D� and c > 0)

Although both stationary and laminar dynamics are shown to be solely
dependent upon particle shape and concentration, it can be anticipated
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that the shear-thinning behavior will be more complicated (see the sections
on the influence of Brownian motion and critical shear rate D� below).
However, if the temperature is kept constant for a given polymer it should
be possible to obtain some information about the effect of shape also at
shear-thinning conditions. Furthermore, if the orientation of the particles
is assumed to be unaffected by the concentration one should be able to iso-
late the effect of a by studying the flow curve, log gsp versus log D, at con-
stant c[g]. This would result in the same gsp at both stationary Newtonian
and laminar Newtonian conditions. An example of such an analysis is
given in Figure 8 under ‘‘iso-Newtonian’’ conditions at c[g] ¼ 3.9� 0.1
(dimensionless) utilizing a pair of aqueous HPMC solutions (1.5 g=dL
50 cP and 0.4 g=dL 10,000 cP). The two solution have practically the same
gsp at stationary and high-shear conditions, and the flow curves are shifted
parallel to the D axis. The shift indicates that D� is inversely proportional
to the square of a for a fully extended polymer.

In the literature it has been noted that the low shear range of the
shear-thinning region demonstrates evidence of universality.[15,42–44] Such
low shear flow curves can often be normalized into a single master curve,
g=g0 ¼ f(Dk), where g0 is the viscosity at zero shear rate and k a chosen
characteristic time constant for each condition (different molecular

Figure 8. Flow curves, log gsp vs. log D (1=s), at ‘‘iso-Newtonian’’ conditions for
a pair of aqueous HPMC solutions at 20�C and at constant c[g]; 1.5 g=dL HPMC
50 cP and 0.40 g=dL HPMC 10,000 c, both having c[g] ¼ 3.9� 0.1 (dimension-
less). Extrapolations are made according to theory that indicates that the curves
coincide at the two Newtonian regions occurring at low and high D. The splitting
of the curves in the intermediate shear-thinning region is characterized by their
different critical shear rates D�.

272 R. Lundqvist

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



weights, concentrations, temperatures, and chemical species).[44] Gener-
ally, a master curve, gsp=gsp0 ¼ f(Dk), appears to be constructable
provided that g is sufficiently large compared to its value g1 in the high-
shear Newtonian range (i.e., at D�D�). Such a master flow curve was
created from combined literature (polystyrene in toluene[42] and polyacry-
lamide in water[45]) and the present HPMC data and was found to support
the power law extrapolations made in Figures 1, 2, and 8. However,
construction of a complete flow curve, including both Newtonian ranges,
requires additional parameters[7,9,11] (g1 and at least one adjustable para-
meter m as in the equation g ¼ g1þ (g0	 g1)=[1þ (Dk)m] suggested by
Cross[7]). Since laminar dynamics allows g1 and g0 to be estimated, from
Equation (3) (g1=g

� ¼ c[g]þ 1) and Equation (6), the entire flow curve
can be described using only the two adjustable constants k and m.

CONCLUSION

Universal Suspension Hydrodynamics

Defining suspension hydrodynamics as the physics of the effect of various
variables on the specific viscosity per unit volume of suspended particles
(i.e., on the reduced specific viscosity gsp=/) it has been demonstrated
(above and previously[1]) that the hydrodynamics under Newtonian con-
ditions, as described by the proposed stationary and laminar dynamics, is
universal in the sense that it is identical for any particle (or polymer) or
solvent at any temperature provided that the model requirements are ful-
filled. These can be summarized as: (1) negligible particle–particle inter-
action, (2) large particles, in comparison with the liquid constituents,
and (3) axial ratio a >> 1. These requirements put limits on the validity
of the suggested universal functions; see Equations (3) and (5).

Concentration Limits

The highest particle concentration possible should be determined by the
point where the liquid is no longer the continuous and unordered phase.
This means that bulk particle systems (e.g., polymer melts) are theoreti-
cally exempted while high concentrations approaching unit volume frac-
tion might still be valid, especially if the particles are uncharged.
Concentrations in this study were up to only 10 g=dL but the literature
gives examples of systems that appear to comply with the stationary
dynamics for as high as 50 g=dL (e.g., up to 47 g=dL polystyrene in tolu-
ene at 40�C,[36] up to 55 g=dL polystyrene in n-butylbenzene at 30�C,[42,46]

and up to 36.5 g=dL for cellulose acetate in acetone or cyclohexanone at
25�C[19,20,47]).
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Size Limits

No exact value of the relative size Vp=Vl, where Vp ¼ volume of particle
and Vl ¼ volume of the liquid constituents (solvent molecules), can be
given. However, it appears from literature[48] data that a value of 5 is not
sufficient since the concentration dependence, up to 40 g=dL, for squalene
in benzene (Vp=Vl approximately 5) seems to be much weaker than
expected from stationary dynamics. For still lower values the concentration
dependence might even be negative, see Part II, giving rise to negative [g].

Axial Ratio Limits

Although a >> 1 is theoretically required, axial ratios approaching unity,
i.e. spheres, give close agreement with stationary dynamics up to surpris-
ingly high concentrations. Appreciable deviation occurs only at concen-
trations above about 10 g=dL, as can be inferred from viscosity data on
aqueous sucrose at 20�C.[49] However, one notes that the viscosity
increasing effect, per unit volume and axial ratio (/a), is stronger for
spheres than for extended shape particles, very slightly at low concentra-
tions but progressively stronger at higher concentration. The phenom-
enon is consistent with the theory of laminar dynamics.

Molecular Characterization

Although only particle shape aw is directly measurable from the universal
suspension hydrodynamics, it is possible, using supplementary molecular
information of, for example, the exponent a of the Mark-Houwink equa-
tion [g] ¼ KMa, the molecular weight M, or the radius of gyration Rg, to
obtain additional information about the polymer using the following
relations derived from laminar dynamics.[1] In order to facilitate numeri-
cal and graphical analysis over the entire range of degree of polymeriza-
tion DP, appropriate relations for the theoretical rod-shaped monomer
unit are also given.

Molecular Weight

Employing the chain-folding hypothesis,[1] i.e., that flexible polymers
may fold 180� to form dense rod-shaped unflexible particles, and where
a is a measure of the resistence to fold, one may calculate the weight
average Mw from Equation (7):

Mw ¼
aw

au

� �1=a

Mu ð7Þ
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where aw ¼ [g] 100q, au is the axial ratio of the monomer unit including
solvation, and Mu is the molecular weight (g=mol) of the monomer unit.
It follows that the weight average DPw equals (aw=au)1=a.

Mark-Houwink Constant Kw

Weight average Kw (dL=g(g=mol)	a) can be obtained using Equation (8):

Kw ¼
auðMuÞ	a

ð100qÞ ð8Þ

In terms of DP the constant KDPw (dL=g) becomes dimensionally simpler:
KDPw ¼ au=(100 q) and the Mark-Houwink equation can be written as

½g� ¼ auDPa
w

ð100qÞ ð9Þ

from which it can be concluded that any polymer suspension (solution)
having the same a and DP will both have practically the same [g] and
viscosity concentration profile (see Equation (6)), varying only slightly
according to the characteristic value au=q (mL=g). The corresponding
number average constants are obtained using the relations Kn=Kw ¼
KDPn=KDPw ¼ Pa, where P is the polydispersity (P ¼Mw=Mn).
Equation (8) is supported by the observation that Kw and a are functions
of each other; log Kw ¼ C	 Ba, where C and B are characteristic con-
stants for a given polymer.[50]

Intrinsic Viscosity of the Repeating Unit

The weight and number average intrinsic viscosities of the rod-shaped
monomer unit are defined according to Equation (10):

½g�u;w ¼
au

ð100qÞ ¼ ½g�u;nP	a ð10Þ

Size

The dimensions of the rod-shaped molecule can be estimated assuming it
to consist of a folded polymer chain with w strands with diameter
du ¼ lu=au (where du and lu are the diameter and length of the repeating
unit) so that the particle diameter becomes d ¼ duw

1=2. The weight
averages of the number of strands ww, length lw (cm), and diameter dw

(cm) can then be resolved[51] from Equations (11), (12), and (13):

w3=2
w ¼ Mw au

ðMuawÞ
¼ DPð1	aÞ

w ð11Þ
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l3
w ¼

l3
u Mw a2

w

ðMua2
uÞ
¼ l3

u DPð1þ2aÞ
w ð12Þ

d3
w ¼

l3
u Mw

ðMuawa2
uÞ
¼ l3

u DPð1	aÞ
w

a3
u

ð13Þ

where lu is in cm. If fully extended (i.e., a ¼ 1) Equations (12) and (13) give
aw ¼ luDPw=du ¼ auDPw in agreement with Flory.[52] The weight average
polymer contour length Lw (i.e., the chain length) is defined as Lw ¼ DPwlu.

Axial Ratio of the Repeating Unit

The value of au can be derived from the volume, length, and cross-
sectional form of the rod-shaped monomer unit. In case the cross section
is circular a value of au, including solvation, can be estimated from lu,
determined, for example, by crystallography, according to Equation (14):

a2
u ¼

qNApl3
u

ð4MuÞ
ð14Þ

where NA is the Avogadro number (number=mol).

Radius of Gyration Rg,w

Treating all polymers as being essentially rod shaped, irrespective of
degree of extension or a, according to the above folding assumption,
one may estimate the weight average Rg,w(cm) from the definition of
radius of gyration Rg; R2

g is the weight average squared distance to the
center of mass.[53] One arrives at Equation (15):[53]

Rg;w ¼
lw

ð12Þ1=2
¼ lw

3:46
ð15Þ

Insertion of Equations (12) and (7) gives

Rg;w ¼
lu DPð1þ2aÞ=3

w

ð12Þ1=2
ð16Þ

from which it follows that Rg,w should be proportional to DPw
(1þ2a)=3.

Radius of Gyration of the Repeating Unit

In accordance with the above, the radius of gyration for the rod-shaped
monomer unit will be defined by

Rg;u;w ¼
lu

ð12Þ1=2
¼ lu

3:46
ð17Þ
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Flory Radius of the Hydrodynamic-Equivalent Sphere RF

The conventional Flory radius RF of an expanded coil, as if carrying
associated solvent,[54] with spherical shape can be calculated from its
definition:

R3
F ¼

100 ½g�Mw 3

ð2:5 NA 4pÞ ð18Þ

Insertion of Equation (7) and ½g� ¼ aw=ð100qÞ yields

R3
F ¼

Mð1þaÞ
w 3 au

ð2:5NA4 pq Ma
uÞ

ð19Þ

from which it is seen that RF is proportional to Mð1þaÞ=3
w .

Radius of Gyration of the Flory Sphere Rg,F

Generally, the density of repeating units for an expanded coil diminishes
with increased distance r from the mass center according to various
models.[53,55] In the case of the Flory sphere the density must be pro-
portional to r�ð3�3=ð1þaÞÞ in order to comply with Equation (19) and the
radius of gyration can therefore be derived exactly:

R2
g;F ¼

3

ð5þ 2aÞR2
F

ð20Þ

The value of Rg,F will thus depend slightly on a, and the highest a is
expected for a fully expanded chain which for a Flory coil is equivalent
to a rod with length 2RF. Such extension is also equivalent to a coil with
a density of repeating units proportional to r�2, which requires a ¼ 2,
resulting in Rg;F ¼ 0:577RF ða ¼ 2Þ and which result independently is
obtained from Equation (15) for lw ¼ 2RF. It is of interest that the same
conclusion, i.e., that the expanded hydrodynamic volume concept
requires a ¼ 2 for rods, was reached already at the introduction of the
concept using other arguments.[56–61] However, full extension does not
correspond to a ¼ 2 but to a ¼ 1 as postulated by laminar dynamics
and supported by experimental Mark-Houwink relations for rigid rods.
Hence, the expanded hydrodynamic volume concept does appear to
reflect a virtual rather than real phenomenon.[1] Full extension, according
to Laminar dynamics, corresponds to Rg;F ¼ 0:654RF ða ¼ 1Þ. Incom-
plete extension may be exemplified with Rg;F ¼ 0:707RF ða ¼ 0:5Þ and
Rg;F ¼ 0:775RF ða ¼ 0Þ. The latter case is identical to the result for the
dense sphere.[53]
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Radius of gyration of a dense sphere Rg;s.

Since the radius of gyration for a dense sphere Rg;s is equal to ð3=5Þ1=2

¼ 0:775 times the physical radius of the sphere[53] one obtains

R3
g;s ¼

ð3=5Þ3=23 Mw

ðq NA 4 pÞ ð21Þ

Ranking of Radii

According to the above analysis one can, in the case Mw >> Mu and
a 
 1, arrange the various radii after increased size as follows:

Rg;s < Rg;F < RF < Rg;w ð22Þ

Molecular Characteristics of HPMC

Table III summarizes the calculated values of Mw; lw;Rg;w;RF;Rg;F,
and Rg;s for the various viscosity grades of HPMC using the measured
½g� and the following constants: q;Mu; lu, and a ¼ 1. The Mw values
are larger than previously calculated,[1] due to a new estimate of
au ðau ¼ 0:58� 0:04Þ from the crystallographic length (lu ¼ 5:15 GÞ of
the repeating glucose unit in cellulose,[62] according to Equation (14).
The grade average Mw values agree well with single batch values mea-
sured with static light scattering (FFF-MALS).[63] However, experi-
mental values of Rg;z for HPMC are both meager[63–66] and subject to
considerable variation, preventing a conclusive comparison with the cal-
culated values. Hence, Rg;z values for some other celluloses, all of which
should have the same length of the repeating main chain glucose unit
(aqueous xanthan[67], hydroxyethyl cellulose, HEC,[68] and nonaqueous
cellulose acetate, CA[69]), with comparable DPw have been included in
Table III. Despite the experimental uncertainty in the measured Rg;z

values these indicate that HPMC is highly extended and that the pro-
posed rod shape is at least as realistic as the spherical shape (dense sphere
or the expanded Flory hydrodynamic-equivalent sphere). The calculated
radii of gyration appears to be in good agreement with the measured
values, especially for xanthan, as long as the molecule dissymmetry is
not too high. For extreme dissymmetry, i.e., axial ratios exceeding
approximately 200 (which corresponds to Rg;z > ca: 500 G for HPMC),
the calculated radii appear to be larger than those measured by light scat-
tering despite the agreement regarding molecular weight. In other words,
light scattering data on Mw and Rg;z appear to give somewhat disparate
values of a at these extreme dissymmetries. An example of the simplicity
of estimating of Rg and a may be given: measurements on hydroxypro-
pyl cellulose, HPC,[70] gave Mw ¼ 80; 000 and Rg ¼ 360 G, while
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Equation (16) gives Rg ¼ 5:15�80000=336=3:46 ¼ 354 G, assuming
Mu ¼ 336 and a ¼ 1. The agreement between calculated and measured
Rg for a ¼ 1 strongly suggests rod shape. Actually, laminar dynamics
appears to be an independent method to corroborate measurements of
Rg of rod-shaped particles.

Influence of Brownian Motion

If Brownian motion could be absent it can be argued that the particle
length axis should orient itself parallel to the bulk flow direction irrespec-
tive of the shear rate, as long as D > 0, since there would be no force
counteracting orientation. However, it can be assumed that the presence
of Brownian motion will cause deviation of the particle axis direction
from the bulk flow direction.[1,9] This appears, nonetheless, from the
equivalence of stationary ½g� and high-shear ½g�, not to influence the
stationary dynamics. Hence, it may be concluded that the flow direction
of the liquid in the immediate vicinity of the particle must remain parallel
to the particle axis independent of the Brownian motion (see assumption
10 in the prior article[1] and assumption II of this aticle’s theory section).
Since stationary and laminar dynamics are found to be independent of
Brownian motion it follows that they also must be temperature inde-
pendent. In contrast, shear-thinning dynamics is essentially dependent
on, in addition to particle shape, particle orientation (see the section on
critical shear rate D� below), which is influenced by Brownian motion,
and hence a dependence on temperature as well as particle dimension
may then be anticipated.

Critical Shear Rate D�

The critical shear rate D� indicates the transition from non-Newtonian to
Newtonian behavior, i.e., the borderline between dependence on and
independence of Brownian motion. Hence, D� appears to be the shear
rate that balances the effect of Brownian motion. As Figure 1 illustrates
D� is independent of concentration while strongly dependent on particle
shape. The combined information in Figures 1, 2, and 8 suggests that, for
fully extended polymers, D� is inversely proportional to the square of the
axial ratio a. Interestingly enough, this proportionality also results if D�

is identified with a rotational diffusion coefficient Dr (1=s) or the inverse
of a characteristic time constant h (s), both at infinite dilution, since one
may then show that

D� ¼ R T

ðg�M 100 ½g�BÞ ð23Þ
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where R is the ideal gas constant (J=mol=K), T the temperature (K), and
B a dimensionless constant. Equation (23) is obtained from the Stokes-
Einstein law for rotatory diffusion of a sphere[71] by scaling according
to shape (proportional to ½g�) and volume (proportional to M) of the par-
ticle. An experimental value B � 0:1 is obtained from the present work.
Various other time constants h have been obtained from Equation (23)
(replacing D� with 1=h) for B values in the range from B ¼ 1:6 to
B ¼ 0:4.[9,10,72]

Influence of Shear

The phenomenological effect of shear rate may physically be explained by
a successive alignment of the particles’ length axis with the bulk flow
direction with increased shear rate, from completely unaligned at station-
ary conditions to fully aligned at laminar conditions occurring at shear
rates exceeding a critical shear rate D�. Hence, the shear-thinning rhe-
ology for suspensions appears to be essentially an orientation pheno-
menon. This description also agrees with the more general opinion[6,7,9]

of a reversible structural change in the fluid, i.e., that time-independent
non-Newtonian flow is due to the fact that ‘‘unbroken structure breaks
down, and the fraction unbroken at zero shear is assumed to be unity.’’[6]

Adopting this view, the characteristic time constant h can then be
regarded as a kinetic, an elastic, or a relaxation constant representative
of the structural equilibrium determined by the counteracting orienta-
tional forces caused by flow and Brownian motion respectively.

Critical Concentration c* and Critical Specific Viscosity gsp
�

The universal stationary dynamics, as presented in a scaled form like
Figure 7, where log gsp versus log c½g� has been plotted, offers the possi-
bility of revealing the universal influence of concentration on specific vis-
cosity. It can be seen from the broken curve calculated by Equation (6)
that the slope d log gsp=d log c½g� increases monotonically and progress-
ively, from slope ¼ 1 to slope > 5, with increasing concentration. Hence,
no particular phenomenon, like a critical concentration reflecting a
change[11] in interaction mechanism, is hinted at. Nevertheless, analysis
of log grel versus log c½g�, using Equation (6) and k ¼ 7.2, gives an inter-
esting result for slope 1. At this point, Equation (24) is valid:

c� ¼ 1:26

½g� ðD! 0Þ ð24Þ

which is deceptively close to the so called ‘‘overlap’’ concentration, which
usually[4] is denoted by c�, and which notation is retained here due to the
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numerical similarity and since it is settled in polymer literature, intro-
duced as ‘‘Grenzkonzentration’’ already by Staudinger,[73,74] who also
suggested that it is caused by an onset of molecular touching. Literature
estimates of c� are essentially based on Staudinger’s idea plus the concept
of a particle having a much larger hydrodynamically effective volume
Vh than the particle’s own volume Vp. Hence, the value c� ¼ 2:5=½g� is
classically obtained[75] by postulating that the polymer molecule is
capable of excluding a large fraction of the solvent from other polymer
molecules by immobilizing or binding large quantities of solvent to the
polymer molecule. In addition, it is assumed that these polymer-solvate
aggregates (‘‘coils’’) have more or less spherical shape so that Einstein’s
relation ½g�/ ¼ 2:5 at infinite dilution can be applied. In this way, the
volume of solvated polymer per amount of dry polymer (mL=g) is
calculated to be equal to 1=c�, as c!0, leading to the perception
that all solvent is immobilized at a polymer concentration of c�.
However, such an expansion, which can be shown to be a factor
Vh=Vp ¼ ðaþ 1:5Þ=2:5 ¼ 100½g�q=2:5, using Einstein’s relation and
Equations (1) and (2), of the hydrodynamically effective volume, appears
unrealistic, e.g., particles with ½g� ¼ 10 dL=g, such as HPMC 10,000 cP,
would expand by a factor of approximately 400 (i.e., immobilize about
400 mL solvent per g dry particles). Other literature estimates of c�

employ the same concept and differ only in that the constant 2.5 is
replaced; e.g., Fujita[4] arrives at c� ¼ 1:46½g� for good solvents while
Onogi et al.[76] and Cornet[77] propose that c� can be obtained, by slope
analysis of log g versus log c, as the onset of a purportedly constant slope
at higher concentrations. Recalculation[43] of Cornet’s data results in
c� ¼ 6:14=½g� for theta solvents. Generally, ‘‘overlap’’ is thought to occur
at unit volume fraction of expanded particles (/h ¼ 1), corresponding to
a true volume fraction of /�p ¼ Vp=Vh and a coil density q�/ ¼ Vh=Vp.
The coil density can alternatively be expressed in monomers=mL coil,
as preferred, for example, by de Gennes,[55,78,79] and one arrives at
q�m ¼ 3N=ð4pR3

FÞ when c! 0. N is the degree of polymerization and
RF (cm) is ‘‘the Flory radius, including the effects of excluded vol-
ume.’’[79] The expression for q�m agrees exactly with c� ¼ 2:5=½g� since
4pR3

F=3 ¼ 100½g�qVp=2:5 when c! 0.
However, the term ‘‘overlap concentration’’ appears misleading in

view of the fact that the volume expansion postulate is not required to
arrive at Equation (24). Instead, as has been argued above, the concen-
tration dependency of viscosity may be seen as purely a matter of hydro-
dynamic interaction or flow perturbation (i.e., a single mechanism)
without additional physical interaction, for example, in the form of
touching (‘‘overlapping’’), between the particles. Hence, the concept of
overlapping seems to be virtual rather than real, and c� must be attribu-
ted to another phenomenon, if such exists at all. It is therefore of interest
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that it can in fact be shown that c�, according to Equation (24), is the
concentration at which there is a maximum in the steady-state mass flow
of Fickian diffusion of particles from a rate-determining diffusion layer
of concentration c, if the permeability can be assumed to be proportional
to 1=g into a sink with lower concentration. Therefore, c� rather corre-
sponds to a critical specific viscosity g�sp that determines the particle mass
transport rate and as such is of importance, for example, for industrial
applications of polymeric controlled-release formulations. Also, one may
demonstrate, by combining Equations (6) (k ¼ 7:2) and (24), that g�sp is
invariable (g�sp � 2:19, see Figure 7) for any particle, independent
of solvent or temperature. Thus, it may be concluded that g�sp, which
originally was introduced as ‘‘Grenzviscosität’’ by Staudinger,[74] is a
universal constant for all polymer suspensions=solutions.

As noted above, c� increases with an increase in shear rate and will
approach bulk particle media (i.e., unit volume fraction or 100qg=dL)
at D> D�. Further, a crude measure of c� is bestowed by the linear
range, denoted by clin, of the reduced viscosity versus concentration
(see Table II). However, clin is not explicitly defined and therefore
largely reliant on the accuracy of the measurements; clin tends to increase
with increased measurement error. Also, numerical analysis using
Equation (6) proposes that both the values of clin and kH in Table II
may be overestimated.

Huggins Constant

Since the viscosity increasing effect for rod-shaped particles is weaker
than for spheres per unit volume and axial ratio as concluded above, it
suggests that the Huggins constant kH is dependent on particle shape.
The effect of shape is also indicated from measurements[80–82] on mono-
disperse polystyrene in good solvents, which show that kH monotonically
increases from kH � 0:35 for high polymers (½g� > 0.467 dL=g in toluene
at 15�C[81]) to kH � 0:83 for spherical oligomers (½g� approximately
0.025 dL=g in benzene at 25�C[80] or toluene at 15�C[81]). The phenomenon
is even more pronounced if side chains are added to the polystyrene mole-
cules.[83] The importance of shape is further elaborated below where the
kH for rods and spheres, under pure hydrodynamic interaction at zero
shear, are estimated.

Rod-Shaped Particles

The Huggins constant can be estimated from Equation (6). The sensi-
tivity towards the value of k is not high for this analysis, and kH adopts
a value of kH ¼ 0:42, for any ½g�, in a range of k (k ¼ 6 to k ¼ 8) at
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infinite dilution. The value of kH agrees well with the study on polystyr-
enes[80,81] but is somewhat lower than the experimental findings on
HPMC (the initial study[1] and the present work) and can be explained
with the general tendency to overestimate kH with increased experimental
uncertainty. Since the highest precision probably was obtained for the
lowest viscosity grade, i.e., HPMC 3 cP, using capillary viscometry[1]

the kH value (kH ¼ 0:45) obtained for this grade should be the most accu-
rate. Still better accuracy might be expected for even lower ½g�, although
spheres should be exempted.

Unfortunately, literature[84] data on kH for high polymers appear to
be too scattered, presumably due to experimental difficulties, adsorption
being one of the problems,[85–88] to reject or approve of the above value
from laminar dynamics. Literature values are commonly in the range
kH ¼ 0:3 to kH ¼ 0:8, and occasionally much higher, indicating par-
ticle–particle interaction or spherical shape. However, for many polymers
in good solvents kH ¼ 0:4� 0:1.[15] Values above 0.5 have been con-
sidered indicative of partial contribution from non-hydrodynamic inter-
action (e.g., particle–particle association).[89] The previously suggested[1]

temperature independence of kH has recently been supported by a study
of polystyrene in a good solvent for which kH was constant (kH ¼ 0:36) in
the temperature range from	35�C to þ25�C.[90]

Spherical Particles

The Huggins constant for spheres can be estimated from Equation (25):

grel ¼
ð1þ /=2Þ
ð1	 2/Þ ð25Þ

which describes the concentration dependence of the viscosity according
to the treatment by Einstein.[91,92] Assuming that this relation is of the
correct form at least at low concentrations one obtains a value of
kH ¼ 0:82. Equation (25) is actually a very good, if not the best, approxi-
mation even up to high volume fractions (at least up to / ¼ 0:40) as can
be judged by comparison with experimental observations[93–95] of spheri-
cal particles. Previous estimates of kH, based on the truncated Equation
(25)[96] (i.e., gsp ¼ 2:5/, which is valid only up to / approximately 0.01)
or on the Gaussian random coil chain in a theta solvent,[97] arrive at
kH ¼ 0:76. An experimental approach is to analyze viscosity data for
solutions of nearly spherical molecules. In this way a value of kH ¼ 1:1
can be obtained from viscosity data[49] on aqueous sucrose. This value
together with the close agreement with Equation (25) (up to / ¼ 0:40
assuming q ¼1 g=mL hydrated sucrose) indicates that the hydrated
sucrose molecule behaves like a spherical particle.
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Relation to Other Models for Suspension Hydrodynamics

The present theory seems to be in full agreement with current rheology
models to which the concepts of a critical shear rate D� and a critical spe-
cific viscosity g�sp have been added. Furthermore, good agreement with
predicted and measured molecular characteristics such as molecular
weight is indicated. However, although the theory referred to here as lami-
nar dynamics agrees with general kinetic-hydrodynamic models, it distin-
guishes itself from some of the paradigms of prevailing[1,9,44,76,98–106]

molecular-hydrodynamics. There are basically two reasons for this,
namely, differences in (1) the interpretation of the Einstein relation
½g�/ ¼ 2:5 and (2) the perception of the transport problem. The common
molecular-hydrodynamics apply the Einstein relation without modifi-
cation and end up in the postulate of solvent immobilization and the idea
of hydrodynamically equivalent spheres,[54,107] which results in the belief
that polymers exist in the form of nearly spherical coils encapsulating a
large amount of solvent. However, Fujita[108] concludes that unless the
hydrodynamic mechanism for the postulate of immobilization of solvent
by the polymer is clarified, the Mark-Houwink equation cannot be said
to be explained by molecular theory:’’ It is amazing that we are still unable
to explain why actual polymer molecules behave as if non-draining for
any chain length . . . . There must be an as yet unknown mechanism that
happens to make the polymer behave as impermeable to the solvent.’’
Even Flory[107] notes that ‘‘the concept of an equivalent hydrodynamic
sphere, impenetrable to the solvent . . . suffers one serious deficiency: the
value of RF remains quantitatively undefined . . . . A more thoroughgoing
examination of the hydrodynamic interaction is needed.’’ Furthermore, de
Gennes[79] arrives at a divergence between observed and predicted
molecular weight dependency of the viscosity and concludes,’’ Thus there
remains a serious problem concerning the dependence on molecular mass
of the viscoelastic parameters. This may be due to some fundamental
flaw in the reptation model . . . .’’ The scaling laws in question were:
grel ffi ðc=c�Þ3:75 and g /M3. The first law corresponds to grel ¼
ðc½g�=gÞ3:75, since c� ¼ g=½g� and where g is a constant as in Equation
(24), which obviously oversimplifies the universal behavior (e.g., the scal-
ing law is not defined at c½g� < g as grel becomes <1) and only approxi-
mately follows the universal behavior in a limited range of c½g� (best fit
if g � 1:5 and 2:5 < c½g� < 35), as can be judged from a comparison with
Equations (5) and (6) and Figure 7.

In contrast to the prevailing molecular-hydrodynamics, the present
theory takes the view that the Einstein relation can be generalized to
any particle shape[1] while retaining the fundamental perceptions: (1) that
the viscosity increasing effect is solely due to perturbation of the flow of
the dispersing fluid and (2) that the hydrodynamically effective volume of
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the particle is equal to its real volume. While the prevailing molecular-
hydrodynamics encompass the opinion that friction between particle
and dispersing fluid as well as between or even within[109,110] particles
accounts for the viscosity increase of the suspension and therefore focus
on phenomena like entanglement, Brownian motion, ‘‘internal chain
dynamics (hopping of individual chain ‘‘beads’’),[104]’’ ‘‘internal vis-
cosity,’’[109,110] oscillating deformation,[111,112] ‘‘viscous drag,’’[106,113]

‘‘cluster formation,’’[82] etc., the standpoint taken in laminar dynamics
is that the viscosity increasing effect is entirely due to friction between
fluid constituents. A completely different hydrodynamic case should
result if friction occurred between particle and solvent.

It appears as if the suggested laminar dynamics confer a viable alter-
native to predominating models on polymer hydrodynamics that is
appealingly simple (being free from adjustable parameters), universal,
and realistic. Furthermore, it is encouraging that the perhaps most
advantageous feature of laminar dynamics, namely, its ability to estimate
particle shape, is experimentally supported by recent viscometry on aque-
ous suspensions of particles with known shape (i.e., cellulose whiskers
having a �140 and ½g�¼ 1.09 dL=g).[114] Equations (1) and (2) give
aw ¼ ½g�100q	 1:5 ¼ 139 if q is taken to be 1.29 g dry cellulose=mL
hydrated cellulose, assuming the swelling percent of the whisker to be
somewhat less than its percent water content, which may be expected
to be similar to microcrystalline cellulose, which takes up approximately
15%w=w of water.[115] Other important support is provided from visual
and rheological observations on model fiber suspensions that confirm
that, at high shear rates, the fibers align with the streamlines and that
the suspension exhibits Newtonian behavior, being a function of fiber
volume fraction and fiber axial ratio only.[116]
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